BIOTECHNOLOGY & INTERNATIONAL FOOD SCARCITY

TACKLING THE GLOBAL FOOD CRISIS WITH BIOTECHNOLOGY

World hunger is a growing problem, one that President Barack Obama has pledged to eliminate among children by 2015.

Other political leaders agree. Former President Jimmy Carter declared in 1997, “Responsible biotechnology is not the enemy; starvation is. Without adequate food supplies at affordable prices, we cannot expect world health or peace.” Under President Ronald Reagan’s administration, in 1988, Congress established a funding program for biotechnology training. From there, universities began building biotechnology training programs and the industry blossomed.

AN INTERNATIONAL CALL TO RAMP UP BIOTECHNOLOGY

Today, biotechnology holds great promise for increasing the world’s food supply and improving the quality of that food. It is estimated that 800 million people around the world suffer from chronic food shortages, and millions more could go hungry due to current and future food crises. The world population continues to strain food supplies. Currently at 6.7 billion people, the world population is projected to grow to 9 billion by 2040.

UN Secretary General Ban Ki-moon warned in 2008 that food production would have to rise by 50 percent by the year 2030 to prevent a global catastrophe. The G8 leaders agreed to work to increase global agricultural yields by providing farmers with greater access to seed varieties developed through biotechnology.

Crops improved through biotechnology produce higher yields worldwide – while using less land and water – to help feed a hungry and growing world.

- more -
Crops improved through biotechnology produce higher yields worldwide – while using less land and water – to help feed a hungry and growing world. Meanwhile, pests and weeds are two of the biggest destroyers of food crops meant to feed the hungry. Biotechnology gives farmers tools to combat these weeds and pests without using more pesticides.

In the case of soybeans, scientists are even using biotechnology to increase the amount of natural plant compounds (isoflavones) and soluble protein in two soybean varieties, so that people receive more of soy’s health benefits and high-quality protein in every bite. Another type of biotech soybean (low-phytate) may help people suffering from iron deficiency anemia – often women and children – absorb more nutrients.

SUPPORTING GLOBAL FARMERS AND COMMUNITIES

Since the first commercialized crop in 1996, the world’s farmers have chosen to consistently increase their plantings of biotech crops by double-digit growth rates every year. In 2007, 12 million farmers in 23 countries – 12 developing and 11 industrialized – planted 252 million acres of biotech crops, primarily soybeans, corn, cotton and canola. Eleven million of these farmers were small or resource-poor farmers in developing countries. Farmers earn higher incomes in every country where biotech crops are grown. **Worldwide, biotech crops have increased farmer incomes by an estimated $4.8 billion to $6.5 billion in a single year, with most gains experienced by farmers in the developing world.**

When the farmer benefits, the rural community benefits economically, as dollars are invested locally (in Argentina, for example, 200,000 agricultural jobs were added). Plus, the community has access to a safe, nutritious and sustainable food supply. Although world hunger is a complicated problem, biotechnology can help supply food to feed the world, including those most at risk.